If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(1/27)(243)^(3x-7)=81^(x-2)
We move all terms to the left:
(1/27)(243)^(3x-7)-(81^(x-2))=0
Domain of the equation: 27)243^(3x-7)!=0We add all the numbers together, and all the variables
x∈R
(+1/27)243^(3x-7)-(81^(x-2))=0
We multiply all the terms by the denominator
(+1-((81^(x-2)))*27)243^(3x-7)=0
We calculate terms in parentheses: +(+1-((81^(x-2)))*27)243^(3x-7), so:
+1-((81^(x-2)))*27)243^(3x-7
determiningTheFunctionDomain -((81^(x-2)))*27)243^(3x+1-7
We add all the numbers together, and all the variables
-((81^(x-2)))*27)243^(3x-6
Back to the equation:
+(-((81^(x-2)))*27)243^(3x-6)
We calculate terms in parentheses: +(-((81^(x-2)))*27)243^(3x-6), so:
-((81^(x-2)))*27)243^(3x-6
We calculate terms in parentheses: +(-((81^(x-2)))*27)243^(3x-6), so:
-((81^(x-2)))*27)243^(3x-6
We calculate terms in parentheses: +(-((81^(x-2)))*27)243^(3x-6), so:
-((81^(x-2)))*27)243^(3x-6
We calculate terms in parentheses: +(-((81^(x-2)))*27)243^(3x-6), so:
-((81^(x-2)))*27)243^(3x-6
We calculate terms in parentheses: +(-((81^(x-2)))*27)243^(3x-6), so:
-((81^(x-2)))*27)243^(3x-6
We calculate terms in parentheses: +(-((81^(x-2)))*27)243^(3x-6), so:
-((81^(x-2)))*27)243^(3x-6
We calculate terms in parentheses: +(-((81^(x-2)))*27)243^(3x-6), so:
-((81^(x-2)))*27)243^(3x-6
We calculate terms in parentheses: +(-((81^(x-2)))*27)243^(3x-6), so:
-((81^(x-2)))*27)243^(3x-6
We calculate terms in parentheses: +(-((81^(x-2)))*27)243^(3x-6), so:
-((81^(x-2)))*27)243^(3x-6
We calculate terms in parentheses: +(-((81^(x-2)))*27)243^(3x-6), so:
-((81^(x-2)))*27)243^(3x-6
We calculate terms in parentheses: +(-((81^(x-2)))*27)243^(3x-6), so:
-((81^(x-2)))*27)243^(3x-6
We calculate terms in parentheses: +(-((81^(x-2)))*27)243^(3x-6), so:
-((81^(x-2)))*27)243^(3x-6
We calculate terms in parentheses: +(-((81^(x-2)))*27)243^(3x-6), so:
-((81^(x-2)))*27)243^(3x-6
We calculate terms in parentheses: +(-((81^(x-2)))*27)243^(3x-6), so:
-((81^(x-2)))*27)243^(3x-6
We calculate terms in parentheses: +(-((81^(x-2)))*27)243^(3x-6), so:
-((81^(x-2)))*27)243^(3x-6
We calculate terms in parentheses: +(-((81^(x-2)))*27)243^(3x-6), so:
-((81^(x-2)))*27)243^(3x-6
We calculate terms in parentheses: +(-((81^(x-2)))*27)243^(3x-6), so:
-((81^(x-2)))*27)243^(3x-6
We calculate terms in parentheses: +(-((81^(x-2)))*27)243^(3x-6), so:
-((81^(x-2)))*27)243^(3x-6
We calculate terms in parentheses: +(-((81^(x-2)))*27)243^(3x-6), so:
-((81^(x-2)))*27)243^(3x-6
We calculate terms in parentheses: +(-((81^(x-2)))*27)243^(3x-6), so:
-((81^(x-2)))*27)243^(3x-6
We calculate terms in parentheses: +(-((81^(x-2)))*27)243^(3x-6), so:
-((81^(x-2)))*27)243^(3x-6
We calculate terms in parentheses: +(-((81^(x-2)))*27)243^(3x-6), so:
-((81^(x-2)))*27)243^(3x-6
We calculate terms in parentheses: +(-((81^(x-2)))*27)243^(3x-6), so:
-((81^(x-2)))*27)243^(3x-6
We calculate terms in parentheses: +(-((81^(x-2)))*27)243^(3x-6), so:
-((81^(x-2)))*27)243^(3x-6
We calculate terms in parentheses: +(-((81^(x-2)))*27)243^(3x-6), so:
-((81^(x-2)))*27)243^(3x-6
We calculate terms in parentheses: +(-((81^(x-2)))*27)243^(3x-6), so:
-((81^(x-2)))*27)243^(3x-6
We calculate terms in parentheses: +(-((81^(x-2)))*27)243^(3x-6), so:
-((81^(x-2)))*27)243^(3x-6
We calculate terms in parentheses: +(-((81^(x-2)))*27)243^(3x-6), so:
-((81^(x-2)))*27)243^(3x-6
We calculate terms in parentheses: +(-((81^(x-2)))*27)243^(3x-6), so:
-((81^(x-2)))*27)243^(3x-6
We calculate terms in parentheses: +(-((81^(x-2)))*27)243^(3x-6), so:
-((81^(x-2)))*27)243^(3x-6
We calculate terms in parentheses: +(-((81^(x-2)))*27)243^(3x-6), so:
-((81^(x-2)))*27)243^(3x-6
We calculate terms in parentheses: +(-((81^(x-2)))*27)243^(3x-6), so:
-((81^(x-2)))*27)243^(3x-6
We calculate terms in parentheses: +(-((81^(x-2)))*27)243^(3x-6), so:
-((81^(x-2)))*27)243^(3x-6
We calculate terms in parentheses: +(-((81^(x-2)))*27)243^(3x-6), so:
-((81^(x-2)))*27)243^(3x-6
We calculate terms in parentheses: +(-((81^(x-2)))*27)243^(3x-6), so:
-((81^(x-2)))*27)243^(3x-6
We calculate terms in parentheses: +(-((81^(x-2)))*27)243^(3x-6), so:
-((81^(x-2)))*27)243^(3x-6
See similar equations:
| 2x+45+3x-8=180 | | 1/27(243)^(3x-7)=81^(1x-2) | | 2x+3x=92 | | 6x-23+4x+41=180 | | 5x-8=xx4 | | 25(x+9)=14(x+9+x) | | (64)^(2x-5)=1/512 | | 2/5(1/2x+5)-4/5=1/2x-1+1/10x | | -4+5-7=10+3x-2x | | 2y=152750000/2 | | 2y=316,250,000-163,500,000 | | -6+-11x+3x2+2x3=0 | | y=152,750 | | -8(x+3)-6=-2(x+7) | | y=152,750/2 | | 2x-100=x+30 | | 2y=316,250-163,500 | | 23x-521x+5=180 | | 1/3x+1/4x-2/5=-5/12x+4/15 | | -x-x-x+5=-10 | | 3x2+12=87 | | -1/4x-7=-2 | | 3(4-2x)=5(x-1)+50 | | 12x-25=200 | | 2x-27=3x+32 | | -8+x+6=28-4 | | 5x+14=2x-21 | | 16×x/100+18×(100-x)/100=16.2 | | 16×x/100+18×(100-x)/100=16 | | X^2+y^2=8180 | | 20=∣3y−11∣ | | X-y=-22 |
Equations solver categories
- Equations solver - equations involving one unknown
- Quadratic equations solver
- Percentage Calculator - Step by step
- Derivative calculator - step by step
- Graphs of functions
- Factorization
- Greatest Common Factor
- Least Common Multiple
- System of equations - step by step solver
- Fractions calculator - step by step
- Theory in mathematics
- Roman numerals conversion
- Tip calculator
- Numbers as decimals, fractions, percentages
- More or less than - questions
- How to solve complicated linear equation